Four-dimensional imaging of murine subpleural alveoli using high-speed optical coherence tomography.


Authors/Editors


Research Areas


Publication Details

Output typeJournal article

Author listKirsten, Gaertner, Schnabel, Meissner, Koch

PublisherWiley

Publication year2013

Volume number6

Issue number2

Start page148

End page152

Number of pages5

ISSN1864-063X

eISSN1864-0648

LanguagesEnglish-Great Britain (EN-GB)


Unpaywall Data

Open access statusclosed


Abstract

The investigation of lung dynamics on alveolar scale is crucial for the understanding and treatment of lung diseases, such as acute lung injury and ventilator induced lung injury, and to promote the development of protective ventilation strategies. One approach to this is the establishment of numerical simulations of lung tissue mechanics where detailed knowledge about three-dimensional alveolar structure changes during the ventilation cycle is required. We suggest four-dimensional optical coherence tomography (OCT) imaging as a promising modality for visualizing the structural dynamics of single alveoli in subpleural lung tissue with high temporal resolution using a mouse model. A high-speed OCT setup based on Fourier domain mode locked laser technology facilitated the acquisition of alveolar structures without noticeable motion artifacts at a rate of 17 three-dimensional stacks per ventilation cycle. The four-dimensional information, acquired in one single ventilation cycle, allowed calculating the volume-pressure curve and the alveolar compliance for single alveoli.


Keywords

No matching items found.


Documents

No matching items found.


Last updated on 2025-01-07 at 00:34